De novo computational design of retro-aldol enzymes.
نویسندگان
چکیده
The creation of enzymes capable of catalyzing any desired chemical reaction is a grand challenge for computational protein design. Using new algorithms that rely on hashing techniques to construct active sites for multistep reactions, we designed retro-aldolases that use four different catalytic motifs to catalyze the breaking of a carbon-carbon bond in a nonnatural substrate. Of the 72 designs that were experimentally characterized, 32, spanning a range of protein folds, had detectable retro-aldolase activity. Designs that used an explicit water molecule to mediate proton shuffling were significantly more successful, with rate accelerations of up to four orders of magnitude and multiple turnovers, than those involving charged side-chain networks. The atomic accuracy of the design process was confirmed by the x-ray crystal structure of active designs embedded in two protein scaffolds, both of which were nearly superimposable on the design model.
منابع مشابه
Retro-biosynthetic screening of a modular pathway design achieves selective route for microbial synthesis of 4-methyl-pentanol.
Increasingly complex metabolic pathways have been engineered by modifying natural pathways and establishing de novo pathways with enzymes from a variety of organisms. Here we apply retro-biosynthetic screening to a modular pathway design to identify a redox neutral, theoretically high yielding route to a branched C6 alcohol. Enzymes capable of converting natural E. coli metabolites into 4-methy...
متن کاملManaging the retro-pathway in direct catalytic asymmetric aldol reactions of thioamides
Thioamides are the preferred pronucleophiles for direct catalytic asymmetric aldol reactions in the context of soft Lewis acid/hard Brønsted base cooperative catalysis. In-depth investigation of this proton-transfer catalysis, which is virtually in equilibrium, revealed that the prominence of the retro-aldol reaction depended on the substrate combination. The retro-aldol reaction is a serious i...
متن کاملDe novo design of biocatalysts.
The challenging field of de novo enzyme design is beginning to produce exciting results. The application of powerful computational methods to functional protein design has recently succeeded at engineering target activities. In addition, efforts in directed evolution continue to expand the transformations that can be accomplished by existing enzymes. The engineering of completely novel catalyti...
متن کاملA temporary stereocentre approach for the asymmetric synthesis of chiral cyclopropane-carboxaldehydes.
A novel way of combining chiral auxiliaries and substrate directable reactions is described that employs a three-step sequence of aldol/cyclopropanation/retro-aldol reactions for the asymmetric synthesis of enantiopure cyclopropane-carboxaldehydes. In the first step, reaction of the boron enolate of (S)-N-propionyl-5,5-dimethyl-oxazolidin-2-one with a series of alpha,beta-unsaturated aldehydes ...
متن کاملStructural analyses of covalent enzyme-substrate analog complexes reveal strengths and limitations of de novo enzyme design.
We report the cocrystal structures of a computationally designed and experimentally optimized retro-aldol enzyme with covalently bound substrate analogs. The structure with a covalently bound mechanism-based inhibitor is similar to, but not identical with, the design model, with an RMSD of 1.4 Å over active-site residues and equivalent substrate atoms. As in the design model, the binding pocket...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 319 5868 شماره
صفحات -
تاریخ انتشار 2008